|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||
java.lang.Objectmulan.classifier.MultiLabelLearnerBase
mulan.classifier.lazy.MultiLabelKNN
mulan.classifier.lazy.IBLR_ML
public class IBLR_ML
This class is an implementation of the "IBLR-ML" and "IBLR-ML+" methods for the MULAN package.
For more information, see
Weiwei Cheng, Eyke Hullermeier (2009). Combining instance-based learning and logistic regression for multilabel classification. Machine Learning. 76(2-3):211-225.
@article{Cheng2009,
author = {Weiwei Cheng and Eyke Hullermeier},
journal = {Machine Learning},
number = {2-3},
pages = {211-225},
publisher = {Springer Netherlands},
title = {Combining instance-based learning and logistic regression for multilabel classification},
volume = {76},
year = {2009},
ISSN = {0885-6125}
}
| Field Summary |
|---|
| Fields inherited from class mulan.classifier.lazy.MultiLabelKNN |
|---|
dfunc, distanceWeighting, lnn, numOfNeighbors, train, WEIGHT_INVERSE, WEIGHT_NONE, WEIGHT_SIMILARITY |
| Fields inherited from class mulan.classifier.MultiLabelLearnerBase |
|---|
featureIndices, labelIndices, numLabels |
| Constructor Summary | |
|---|---|
IBLR_ML()
Default constructor uses 10 NN |
|
IBLR_ML(int numNeighbors)
Constructor that sets the number of neighbors |
|
IBLR_ML(int numNeighbors,
boolean addFeatures)
Full constructor |
|
| Method Summary | |
|---|---|
protected void |
buildInternal(MultiLabelInstances mltrain)
Learner specific implementation of building the model from MultiLabelInstances
training data set. |
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on. |
String |
globalInfo()
Returns a string describing the multi-label learner. |
protected MultiLabelOutput |
makePredictionInternal(Instance instance)
Learner specific implementation for predicting on specified data based on trained model. |
| Methods inherited from class mulan.classifier.lazy.MultiLabelKNN |
|---|
isUpdatable, setDfunc, setDistanceWeighting |
| Methods inherited from class mulan.classifier.MultiLabelLearnerBase |
|---|
build, debug, getDebug, isModelInitialized, makeCopy, makePrediction, setDebug |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public IBLR_ML()
public IBLR_ML(int numNeighbors)
numNeighbors - the number of nearest neighbors considered
public IBLR_ML(int numNeighbors,
boolean addFeatures)
numNeighbors - the number of nearest neighbors consideredaddFeatures - when true, IBLR-ML+ is used| Method Detail |
|---|
public String globalInfo()
MultiLabelLearnerBase
globalInfo in class MultiLabelLearnerBase
protected void buildInternal(MultiLabelInstances mltrain)
throws Exception
MultiLabelLearnerBaseMultiLabelInstances
training data set. This method is called from MultiLabelLearnerBase.build(MultiLabelInstances) method,
where behavior common across all learners is applied.
buildInternal in class MultiLabelKNNmltrain - the training data set
Exception - if learner model was not created successfully
protected MultiLabelOutput makePredictionInternal(Instance instance)
throws Exception
MultiLabelLearnerBaseMultiLabelLearnerBase.makePrediction(weka.core.Instance) which guards for model
initialization and apply common handling/behavior.
makePredictionInternal in class MultiLabelLearnerBaseinstance - the data instance to predict on
Exception - if an error occurs while making the prediction.
InvalidDataException - if specified instance data is invalid and can not be processed by the learnerpublic TechnicalInformation getTechnicalInformation()
MultiLabelLearnerBase
getTechnicalInformation in interface TechnicalInformationHandlergetTechnicalInformation in class MultiLabelLearnerBase
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||