|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object mulan.classifier.MultiLabelLearnerBase mulan.classifier.neural.BPMLL
public class BPMLL
The implementation of Back-Propagation Multi-Label Learning (BPMLL) learner. The learned model is stored in {@link NeuralNet} neural network. The models of the learner built by {@link BPMLLAlgorithm} from given training data set.
BibTeX:@article{Zhang2006, author = {Zhang, M.L., Zhou, Z.H.}, journal = {IEEE Transactions on Knowledge and Data Engineering}, pages = {1338-1351}, title = {Multi-label neural networks with applications to functional genomics and text categorization}, volume = {18}, year = {2006} }
BPMLLAlgorithm
,
Serialized FormField Summary |
---|
Fields inherited from class mulan.classifier.MultiLabelLearnerBase |
---|
featureIndices, labelIndices, numLabels |
Constructor Summary | |
---|---|
BPMLL()
Creates a new instance of BPMLL learner. |
|
BPMLL(long randomnessSeed)
Creates a new instance of BPMLL learner. |
Method Summary | |
---|---|
protected void |
buildInternal(MultiLabelInstances instances)
Learner specific implementation of building the model from MultiLabelInstances
training data set. |
int[] |
getHiddenLayers()
Gets an array defining topology of hidden layer of the underlying neural model. |
double |
getLearningRate()
Gets the learning rate. |
boolean |
getNormalizeAttributes()
Gets a value if normalization of nominal attributes should take place. |
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on. |
int |
getTrainingEpochs()
Gets number of training epochs. |
double |
getWeightsDecayRegularization()
Gets a value of the regularization cost term for weights decay. |
String |
globalInfo()
Returns a string describing the multi-label learner. |
MultiLabelOutput |
makePredictionInternal(Instance instance)
Learner specific implementation for predicting on specified data based on trained model. |
void |
setHiddenLayers(int[] hiddenLayers)
Sets the topology of hidden layers for neural network. |
void |
setLearningRate(double learningRate)
Sets the learning rate. |
void |
setNormalizeAttributes(boolean normalize)
Sets whether attributes of instances data (except label attributes) should be normalized prior to building the learner. |
void |
setTrainingEpochs(int epochs)
Sets the number of training epochs. |
void |
setWeightsDecayRegularization(double weightsDecayCost)
Sets the regularization cost term for weights decay. |
Methods inherited from class mulan.classifier.MultiLabelLearnerBase |
---|
build, debug, getDebug, isModelInitialized, isUpdatable, makeCopy, makePrediction, setDebug |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public BPMLL()
BPMLL
learner.
public BPMLL(long randomnessSeed)
BPMLL
learner.
randomnessSeed
- the seed value for pseudo-random generatorMethod Detail |
---|
public void setHiddenLayers(int[] hiddenLayers)
null
is specified, no hidden layers will be created.
hiddenLayers
-
IllegalArgumentException
- if any value in the array is less or equal to zeropublic int[] getHiddenLayers()
public void setLearningRate(double learningRate)
learningRate
- the learning rate
IllegalArgumentException
- if passed value is invalidpublic double getLearningRate()
public void setWeightsDecayRegularization(double weightsDecayCost)
weightsDecayCost
- the weights decay cost term
IllegalArgumentException
- if passed value is invalidpublic double getWeightsDecayRegularization()
public void setTrainingEpochs(int epochs)
epochs
- the number of training epochs
IllegalArgumentException
- if passed value is invalidpublic int getTrainingEpochs()
public void setNormalizeAttributes(boolean normalize)
normalize
- flag if normalization of attributes should be used
IllegalArgumentException
- if passed value is invalidpublic boolean getNormalizeAttributes()
protected void buildInternal(MultiLabelInstances instances) throws Exception
MultiLabelLearnerBase
MultiLabelInstances
training data set. This method is called from MultiLabelLearnerBase.build(MultiLabelInstances)
method,
where behavior common across all learners is applied.
buildInternal
in class MultiLabelLearnerBase
instances
- the training data set
Exception
- if learner model was not created successfullypublic String globalInfo()
MultiLabelLearnerBase
globalInfo
in class MultiLabelLearnerBase
public TechnicalInformation getTechnicalInformation()
MultiLabelLearnerBase
getTechnicalInformation
in interface TechnicalInformationHandler
getTechnicalInformation
in class MultiLabelLearnerBase
public MultiLabelOutput makePredictionInternal(Instance instance) throws InvalidDataException
MultiLabelLearnerBase
MultiLabelLearnerBase.makePrediction(weka.core.Instance)
which guards for model
initialization and apply common handling/behavior.
makePredictionInternal
in class MultiLabelLearnerBase
instance
- the data instance to predict on
InvalidDataException
- if specified instance data is invalid and can not be processed by the learner
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |