|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object mulan.classifier.MultiLabelLearnerBase mulan.classifier.meta.MultiLabelMetaLearner mulan.classifier.meta.RAkEL
public class RAkEL
Class implementing a generalized version of the RAkEL (RAndom k-labELsets) algorithm. For more information, see
Grigorios Tsoumakas, Ioannis Katakis, Ioannis Vlahavas (2011). Random k-Labelsets for Multi-Label Classification. IEEE Transactions on Knowledge and Data Engineering. 23(7):1079-1089.
@article{Tsoumakas2011, author = {Grigorios Tsoumakas and Ioannis Katakis and Ioannis Vlahavas}, journal = {IEEE Transactions on Knowledge and Data Engineering}, number = {7}, pages = {1079-1089}, title = {Random k-Labelsets for Multi-Label Classification}, volume = {23}, year = {2011} }
Field Summary |
---|
Fields inherited from class mulan.classifier.meta.MultiLabelMetaLearner |
---|
baseLearner |
Fields inherited from class mulan.classifier.MultiLabelLearnerBase |
---|
featureIndices, labelIndices, numLabels |
Constructor Summary | |
---|---|
RAkEL()
Default constructor |
|
RAkEL(MultiLabelLearner baseLearner)
Creates an instance based on a given multi-label learner |
|
RAkEL(MultiLabelLearner baseLearner,
int models,
int subset)
Creates an instance given a specific multi-label learner, number of models and size of subsets |
|
RAkEL(MultiLabelLearner baseLearner,
int models,
int subset,
double threshold)
Creates an instance given a specific multi-label learner, number of models, size of subsets and threshold |
Method Summary | |
---|---|
static int |
binomial(int n,
int m)
The binomial function |
protected void |
buildInternal(MultiLabelInstances trainingData)
Learner specific implementation of building the model from MultiLabelInstances
training data set. |
int |
getNumModels()
Returns the number of models |
int |
getSizeOfSubset()
Returns the size of the subsets |
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on. |
String |
globalInfo()
Returns a string describing classifier |
protected MultiLabelOutput |
makePredictionInternal(Instance instance)
Learner specific implementation for predicting on specified data based on trained model. |
void |
setNumModels(int models)
Sets the number of models |
void |
setSeed(int x)
Sets the seed for random number generation |
void |
setSizeOfSubset(int size)
Sets the size of the subsets |
Methods inherited from class mulan.classifier.meta.MultiLabelMetaLearner |
---|
getBaseLearner |
Methods inherited from class mulan.classifier.MultiLabelLearnerBase |
---|
build, debug, getDebug, isModelInitialized, isUpdatable, makeCopy, makePrediction, setDebug |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public RAkEL()
public RAkEL(MultiLabelLearner baseLearner)
baseLearner
- the multi-label learnerpublic RAkEL(MultiLabelLearner baseLearner, int models, int subset)
baseLearner
- a multi-label learnermodels
- a number of modelssubset
- a size of subsetspublic RAkEL(MultiLabelLearner baseLearner, int models, int subset, double threshold)
baseLearner
- a multi-label learnermodels
- a number of modelssubset
- a size of subsetsthreshold
- a thresholdMethod Detail |
---|
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface TechnicalInformationHandler
getTechnicalInformation
in class MultiLabelLearnerBase
public void setSeed(int x)
x
- the seedpublic void setSizeOfSubset(int size)
size
- the size of the subsetspublic int getSizeOfSubset()
public void setNumModels(int models)
models
- number of modelspublic int getNumModels()
public static int binomial(int n, int m)
n
- m
-
protected void buildInternal(MultiLabelInstances trainingData) throws Exception
MultiLabelLearnerBase
MultiLabelInstances
training data set. This method is called from MultiLabelLearnerBase.build(MultiLabelInstances)
method,
where behavior common across all learners is applied.
buildInternal
in class MultiLabelLearnerBase
trainingData
- the training data set
Exception
- if learner model was not created successfullyprotected MultiLabelOutput makePredictionInternal(Instance instance) throws Exception
MultiLabelLearnerBase
MultiLabelLearnerBase.makePrediction(weka.core.Instance)
which guards for model
initialization and apply common handling/behavior.
makePredictionInternal
in class MultiLabelLearnerBase
instance
- the data instance to predict on
Exception
- if an error occurs while making the prediction.
InvalidDataException
- if specified instance data is invalid and can not be processed by the learnerpublic String globalInfo()
globalInfo
in class MultiLabelLearnerBase
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |