|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||
java.lang.Objectmulan.classifier.MultiLabelLearnerBase
mulan.classifier.meta.MultiLabelMetaLearner
mulan.classifier.meta.RAkEL
public class RAkEL
Class implementing a generalized version of the RAkEL (RAndom k-labELsets) algorithm. For more information, see
Grigorios Tsoumakas, Ioannis Katakis, Ioannis Vlahavas (2011). Random k-Labelsets for Multi-Label Classification. IEEE Transactions on Knowledge and Data Engineering. 23(7):1079-1089.
@article{Tsoumakas2011,
author = {Grigorios Tsoumakas and Ioannis Katakis and Ioannis Vlahavas},
journal = {IEEE Transactions on Knowledge and Data Engineering},
number = {7},
pages = {1079-1089},
title = {Random k-Labelsets for Multi-Label Classification},
volume = {23},
year = {2011}
}
| Field Summary |
|---|
| Fields inherited from class mulan.classifier.meta.MultiLabelMetaLearner |
|---|
baseLearner |
| Fields inherited from class mulan.classifier.MultiLabelLearnerBase |
|---|
featureIndices, labelIndices, numLabels |
| Constructor Summary | |
|---|---|
RAkEL()
Default constructor |
|
RAkEL(MultiLabelLearner baseLearner)
Creates an instance based on a given multi-label learner |
|
RAkEL(MultiLabelLearner baseLearner,
int models,
int subset)
Creates an instance given a specific multi-label learner, number of models and size of subsets |
|
RAkEL(MultiLabelLearner baseLearner,
int models,
int subset,
double threshold)
Creates an instance given a specific multi-label learner, number of models, size of subsets and threshold |
|
| Method Summary | |
|---|---|
static int |
binomial(int n,
int m)
The binomial function |
protected void |
buildInternal(MultiLabelInstances trainingData)
Learner specific implementation of building the model from MultiLabelInstances
training data set. |
int |
getNumModels()
Returns the number of models |
int |
getSizeOfSubset()
Returns the size of the subsets |
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on. |
String |
globalInfo()
Returns a string describing classifier |
protected MultiLabelOutput |
makePredictionInternal(Instance instance)
Learner specific implementation for predicting on specified data based on trained model. |
void |
setNumModels(int models)
Sets the number of models |
void |
setSeed(int x)
Sets the seed for random number generation |
void |
setSizeOfSubset(int size)
Sets the size of the subsets |
| Methods inherited from class mulan.classifier.meta.MultiLabelMetaLearner |
|---|
getBaseLearner |
| Methods inherited from class mulan.classifier.MultiLabelLearnerBase |
|---|
build, debug, getDebug, isModelInitialized, isUpdatable, makeCopy, makePrediction, setDebug |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public RAkEL()
public RAkEL(MultiLabelLearner baseLearner)
baseLearner - the multi-label learner
public RAkEL(MultiLabelLearner baseLearner,
int models,
int subset)
baseLearner - a multi-label learnermodels - a number of modelssubset - a size of subsets
public RAkEL(MultiLabelLearner baseLearner,
int models,
int subset,
double threshold)
baseLearner - a multi-label learnermodels - a number of modelssubset - a size of subsetsthreshold - a threshold| Method Detail |
|---|
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation in interface TechnicalInformationHandlergetTechnicalInformation in class MultiLabelLearnerBasepublic void setSeed(int x)
x - the seedpublic void setSizeOfSubset(int size)
size - the size of the subsetspublic int getSizeOfSubset()
public void setNumModels(int models)
models - number of modelspublic int getNumModels()
public static int binomial(int n,
int m)
n - m -
protected void buildInternal(MultiLabelInstances trainingData)
throws Exception
MultiLabelLearnerBaseMultiLabelInstances
training data set. This method is called from MultiLabelLearnerBase.build(MultiLabelInstances) method,
where behavior common across all learners is applied.
buildInternal in class MultiLabelLearnerBasetrainingData - the training data set
Exception - if learner model was not created successfully
protected MultiLabelOutput makePredictionInternal(Instance instance)
throws Exception
MultiLabelLearnerBaseMultiLabelLearnerBase.makePrediction(weka.core.Instance) which guards for model
initialization and apply common handling/behavior.
makePredictionInternal in class MultiLabelLearnerBaseinstance - the data instance to predict on
Exception - if an error occurs while making the prediction.
InvalidDataException - if specified instance data is invalid and can not be processed by the learnerpublic String globalInfo()
globalInfo in class MultiLabelLearnerBase
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||