|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object mulan.classifier.MultiLabelLearnerBase mulan.classifier.meta.MultiLabelMetaLearner mulan.classifier.meta.RAkELd
public class RAkELd
Class implementing a generalized version of the RAkEL-d (RAndom k-labELsets) algorithm with disjoint labelsets. For more information, see
Grigorios Tsoumakas, Ioannis Katakis, Ioannis Vlahavas (2011). Random k-Labelsets for Multi-Label Classification. IEEE Transactions on Knowledge and Data Engineering. 23(7):1079-1089.
@article{Tsoumakas2011, author = {Grigorios Tsoumakas and Ioannis Katakis and Ioannis Vlahavas}, journal = {IEEE Transactions on Knowledge and Data Engineering}, number = {7}, pages = {1079-1089}, title = {Random k-Labelsets for Multi-Label Classification}, volume = {23}, year = {2011} }
Field Summary |
---|
Fields inherited from class mulan.classifier.meta.MultiLabelMetaLearner |
---|
baseLearner |
Fields inherited from class mulan.classifier.MultiLabelLearnerBase |
---|
featureIndices, labelIndices, numLabels |
Constructor Summary | |
---|---|
RAkELd()
Default constructor |
|
RAkELd(MultiLabelLearner baseLearner)
Construct a new instance based on the given multi-label learner |
|
RAkELd(MultiLabelLearner baseLearner,
int subset)
Constructs a new instance based on the given multi-label learner and size of subset |
Method Summary | |
---|---|
protected void |
buildInternal(MultiLabelInstances trainingData)
Learner specific implementation of building the model from MultiLabelInstances
training data set. |
int |
getSizeOfSubset()
Returns the size of the subsets |
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on. |
String |
globalInfo()
Returns a string describing classifier |
protected MultiLabelOutput |
makePredictionInternal(Instance instance)
Learner specific implementation for predicting on specified data based on trained model. |
void |
setSeed(int x)
Sets the seed for random number generation |
void |
setSizeOfSubset(int size)
Sets the size of the subsets |
void |
updateClassifier(MultiLabelInstances mlTrainData,
int model)
Updates the current ensemble by training a specific classifier |
Methods inherited from class mulan.classifier.meta.MultiLabelMetaLearner |
---|
getBaseLearner |
Methods inherited from class mulan.classifier.MultiLabelLearnerBase |
---|
build, debug, getDebug, isModelInitialized, isUpdatable, makeCopy, makePrediction, setDebug |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public RAkELd()
public RAkELd(MultiLabelLearner baseLearner)
baseLearner
- a multi-label learnerpublic RAkELd(MultiLabelLearner baseLearner, int subset)
baseLearner
- the multi-label learnersubset
- the size of the subsetMethod Detail |
---|
public TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface TechnicalInformationHandler
getTechnicalInformation
in class MultiLabelLearnerBase
public void setSeed(int x)
x
- the seedpublic void setSizeOfSubset(int size)
size
- size of subsetspublic int getSizeOfSubset()
protected void buildInternal(MultiLabelInstances trainingData) throws Exception
MultiLabelLearnerBase
MultiLabelInstances
training data set. This method is called from MultiLabelLearnerBase.build(MultiLabelInstances)
method,
where behavior common across all learners is applied.
buildInternal
in class MultiLabelLearnerBase
trainingData
- the training data set
Exception
- if learner model was not created successfullypublic void updateClassifier(MultiLabelInstances mlTrainData, int model) throws Exception
mlTrainData
- the training datamodel
- the model to train
Exception
protected MultiLabelOutput makePredictionInternal(Instance instance) throws Exception
MultiLabelLearnerBase
MultiLabelLearnerBase.makePrediction(weka.core.Instance)
which guards for model
initialization and apply common handling/behavior.
makePredictionInternal
in class MultiLabelLearnerBase
instance
- the data instance to predict on
Exception
- if an error occurs while making the prediction.
InvalidDataException
- if specified instance data is invalid and can not be processed by the learnerpublic String globalInfo()
globalInfo
in class MultiLabelLearnerBase
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |