mulan.classifier.meta.thresholding
Class ExampleBasedFMeasureOptimizer

java.lang.Object
  extended by mulan.classifier.MultiLabelLearnerBase
      extended by mulan.classifier.meta.MultiLabelMetaLearner
          extended by mulan.classifier.meta.thresholding.ExampleBasedFMeasureOptimizer
All Implemented Interfaces:
Serializable, MultiLabelLearner, TechnicalInformationHandler

public class ExampleBasedFMeasureOptimizer
extends MultiLabelMetaLearner

This class takes the marginal probabilities estimated for each label by a multi-label learner and transforms them into a bipartition which is approximately optimal for example-based FMeasure. This optimizer assumes independence of the target variables (labels) and the optimal solution always contains the labels with the highest marginal probabilities. For more information, see

David Lewis: Evaluating and optimizing autonomous text classification systems. In: Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR 1995), 1995.

BibTeX:

 @inproceedings{Lewis1995,
    author = {David Lewis},
    booktitle = {Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR 1995)},
    title = {Evaluating and optimizing autonomous text classification systems},
    year = {1995}
 }
 

Version:
2012.07.16
Author:
Eleftherios Spyromitros-Xioufis
See Also:
Serialized Form

Field Summary
 
Fields inherited from class mulan.classifier.meta.MultiLabelMetaLearner
baseLearner
 
Fields inherited from class mulan.classifier.MultiLabelLearnerBase
featureIndices, labelIndices, numLabels
 
Constructor Summary
ExampleBasedFMeasureOptimizer()
          Default constructor
ExampleBasedFMeasureOptimizer(MultiLabelLearner baseLearner)
          The supplied multi-label learner should be able to output marginal probabilities.
 
Method Summary
protected  void buildInternal(MultiLabelInstances trainingSet)
          Learner specific implementation of building the model from MultiLabelInstances training data set.
 TechnicalInformation getTechnicalInformation()
          Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
 String globalInfo()
          Returns a string describing the multi-label learner.
protected  MultiLabelOutput makePredictionInternal(Instance instance)
          Learner specific implementation for predicting on specified data based on trained model.
 
Methods inherited from class mulan.classifier.meta.MultiLabelMetaLearner
getBaseLearner
 
Methods inherited from class mulan.classifier.MultiLabelLearnerBase
build, debug, getDebug, isModelInitialized, isUpdatable, makeCopy, makePrediction, setDebug
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

ExampleBasedFMeasureOptimizer

public ExampleBasedFMeasureOptimizer(MultiLabelLearner baseLearner)
The supplied multi-label learner should be able to output marginal probabilities.

Parameters:
baseLearner -

ExampleBasedFMeasureOptimizer

public ExampleBasedFMeasureOptimizer()
Default constructor

Method Detail

buildInternal

protected void buildInternal(MultiLabelInstances trainingSet)
                      throws Exception
Description copied from class: MultiLabelLearnerBase
Learner specific implementation of building the model from MultiLabelInstances training data set. This method is called from MultiLabelLearnerBase.build(MultiLabelInstances) method, where behavior common across all learners is applied.

Specified by:
buildInternal in class MultiLabelLearnerBase
Parameters:
trainingSet - the training data set
Throws:
Exception - if learner model was not created successfully

makePredictionInternal

protected MultiLabelOutput makePredictionInternal(Instance instance)
                                           throws Exception,
                                                  InvalidDataException
Description copied from class: MultiLabelLearnerBase
Learner specific implementation for predicting on specified data based on trained model. This method is called from MultiLabelLearnerBase.makePrediction(weka.core.Instance) which guards for model initialization and apply common handling/behavior.

Specified by:
makePredictionInternal in class MultiLabelLearnerBase
Parameters:
instance - the data instance to predict on
Returns:
the output of the learner for the given instance
Throws:
Exception - if an error occurs while making the prediction.
InvalidDataException - if specified instance data is invalid and can not be processed by the learner

getTechnicalInformation

public TechnicalInformation getTechnicalInformation()
Description copied from class: MultiLabelLearnerBase
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.

Specified by:
getTechnicalInformation in interface TechnicalInformationHandler
Specified by:
getTechnicalInformation in class MultiLabelLearnerBase
Returns:
the technical information about this class

globalInfo

public String globalInfo()
Description copied from class: MultiLabelLearnerBase
Returns a string describing the multi-label learner.

Specified by:
globalInfo in class MultiLabelLearnerBase
Returns:
a description suitable for displaying in a future gui