mulan.classifier.neural
Class MMPMaxUpdateRule
java.lang.Object
mulan.classifier.neural.MMPUpdateRuleBase
mulan.classifier.neural.MMPMaxUpdateRule
- All Implemented Interfaces:
- ModelUpdateRule
public class MMPMaxUpdateRule
- extends MMPUpdateRuleBase
Implementation of max update rule for MMPLearner
. Only two perceptrons will
receive updates, the one corresponding to the lowest ranked relevant label and the
one corresponding to the highest ranked non-relevant label.
The model is represented as a list of perceptrons (one for each label), each represented
by Neuron
. Perceptrons are expected to be in the same order as labels in training
data set.
- Version:
- 2012.02.27
- Author:
- Jozef Vilcek
- See Also:
MMPUpdateRuleBase
Method Summary |
protected double[] |
computeUpdateParameters(DataPair example,
double[] confidences,
double loss)
Computes update parameters for each perceptron which will be subsequently used
for updating the weights. |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
MMPMaxUpdateRule
public MMPMaxUpdateRule(List<Neuron> perceptrons,
RankingLossFunction lossMeasure)
- Creates a new instance of
MMPMaxUpdateRule
.
- Parameters:
perceptrons
- the list of perceptrons, representing the model, which will receive updates.lossMeasure
- the loss measure used to decide when the model should be updated by the rule
computeUpdateParameters
protected double[] computeUpdateParameters(DataPair example,
double[] confidences,
double loss)
- Description copied from class:
MMPUpdateRuleBase
- Computes update parameters for each perceptron which will be subsequently used
for updating the weights. The function is called internally from
MMPUpdateRuleBase.process(DataPair, Map)
function, when update of model for
given input example is needed.
- Specified by:
computeUpdateParameters
in class MMPUpdateRuleBase
- Parameters:
example
- the input exampleconfidences
- the confidences outputed by the model the input exampleloss
- the lossFunction measure of the model for given input example
- Returns:
- the parameters for updating preceptrons