mulan.classifier.neural
Class MMPRandomizedUpdateRule
java.lang.Object
mulan.classifier.neural.MMPUpdateRuleBase
mulan.classifier.neural.MMPRandomizedUpdateRule
- All Implemented Interfaces:
- ModelUpdateRule
public class MMPRandomizedUpdateRule
- extends MMPUpdateRuleBase
Implementation of randomized update rule for MMPLearner
. It is a randomized variation
of MMPUniformUpdateRule
. A opposed to uniformed update, the randomized version will
penalize each wrongly order pair of labels by random value from interval <0,1>. Afterwards, the
penalty weights are normalized, so their sum is equal to 1.
The model is represented as a list of perceptrons (one for each label), each represented
by Neuron
. Perceptrons are expected to be in the same order as labels in training data set.
- Version:
- 2012.02.27
- Author:
- Jozef Vilcek
- See Also:
MMPUpdateRuleBase
Method Summary |
protected double[] |
computeUpdateParameters(DataPair example,
double[] confidences,
double loss)
Computes update parameters for each perceptron which will be subsequently used
for updating the weights. |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
MMPRandomizedUpdateRule
public MMPRandomizedUpdateRule(List<Neuron> perceptrons,
RankingLossFunction lossMeasure)
- Creates a new instance of
MMPRandomizedUpdateRule
.
- Parameters:
perceptrons
- the list of perceptrons, representing the model, which will receive updates.lossMeasure
- the loss measure used to decide when the model should be updated by the rule
computeUpdateParameters
protected double[] computeUpdateParameters(DataPair example,
double[] confidences,
double loss)
- Description copied from class:
MMPUpdateRuleBase
- Computes update parameters for each perceptron which will be subsequently used
for updating the weights. The function is called internally from
MMPUpdateRuleBase.process(DataPair, Map)
function, when update of model for
given input example is needed.
- Specified by:
computeUpdateParameters
in class MMPUpdateRuleBase
- Parameters:
example
- the input exampleconfidences
- the confidences outputed by the model the input exampleloss
- the lossFunction measure of the model for given input example
- Returns:
- the parameters for updating preceptrons