|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||
java.lang.Objectmulan.classifier.MultiLabelLearnerBase
mulan.classifier.transformation.TransformationBasedMultiLabelLearner
mulan.classifier.transformation.LabelPowerset
public class LabelPowerset
Class that implements a label powerset classifier
| Field Summary | |
|---|---|
protected boolean |
makePredictionsBasedOnConfidences
Whether the method introduced by the PPT algorithm will be used to actually get the 1/0 output bipartition based on the confidences (requires a threshold) |
protected Random |
Rand
Random number generator for randomly solving tied predictions |
protected double |
threshold
Threshold used for deciding the 1/0 output value of each label based on the corresponding confidences as calculated by the method introduced in the PPT algorithm |
protected LabelPowersetTransformation |
transformation
The object that performs the data transformation |
| Fields inherited from class mulan.classifier.transformation.TransformationBasedMultiLabelLearner |
|---|
baseClassifier |
| Fields inherited from class mulan.classifier.MultiLabelLearnerBase |
|---|
featureIndices, labelIndices, numLabels |
| Constructor Summary | |
|---|---|
LabelPowerset(Classifier classifier)
Conststructor that initializes the learner with a base classifier |
|
| Method Summary | |
|---|---|
protected void |
buildInternal(MultiLabelInstances mlData)
Learner specific implementation of building the model from MultiLabelInstances
training data set. |
protected MultiLabelOutput |
makePredictionInternal(Instance instance)
Learner specific implementation for predicting on specified data based on trained model. |
void |
setConfidenceCalculationMethod(int method)
Sets the method of calculating probabilities for each label |
void |
setMakePredictionsBasedOnConfidences(boolean value)
Sets a threshold for obtaining the bipartition |
void |
setSeed(int s)
Setting a seed for random selection in case of ties during prediction |
void |
setThreshold(double t)
The threshold for obtaining the bipartition from probabilities |
| Methods inherited from class mulan.classifier.transformation.TransformationBasedMultiLabelLearner |
|---|
getBaseClassifier, getTechnicalInformation, globalInfo |
| Methods inherited from class mulan.classifier.MultiLabelLearnerBase |
|---|
build, debug, getDebug, isModelInitialized, isUpdatable, makeCopy, makePrediction, setDebug |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Field Detail |
|---|
protected boolean makePredictionsBasedOnConfidences
protected double threshold
protected LabelPowersetTransformation transformation
protected Random Rand
| Constructor Detail |
|---|
public LabelPowerset(Classifier classifier)
classifier - the base single-label classification algorithm| Method Detail |
|---|
public void setMakePredictionsBasedOnConfidences(boolean value)
value - the threshold's valuepublic void setSeed(int s)
s - the seedpublic void setThreshold(double t)
t - public void setConfidenceCalculationMethod(int method)
method -
protected void buildInternal(MultiLabelInstances mlData)
throws Exception
MultiLabelLearnerBaseMultiLabelInstances
training data set. This method is called from MultiLabelLearnerBase.build(MultiLabelInstances) method,
where behavior common across all learners is applied.
buildInternal in class MultiLabelLearnerBasemlData - the training data set
Exception - if learner model was not created successfully
protected MultiLabelOutput makePredictionInternal(Instance instance)
throws Exception
MultiLabelLearnerBaseMultiLabelLearnerBase.makePrediction(weka.core.Instance) which guards for model
initialization and apply common handling/behavior.
makePredictionInternal in class MultiLabelLearnerBaseinstance - the data instance to predict on
Exception - if an error occurs while making the prediction.
InvalidDataException - if specified instance data is invalid and can not be processed by the learner
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||