mulan.evaluation.loss
Class OneMinusAveragePrecision

java.lang.Object
  extended by mulan.evaluation.loss.RankingLossFunctionBase
      extended by mulan.evaluation.loss.OneMinusAveragePrecision
All Implemented Interfaces:
Serializable, MultiLabelLossFunction, RankingLossFunction

public class OneMinusAveragePrecision
extends RankingLossFunctionBase

Implementation of the average precision as loss function.

Version:
2010.12.14
Author:
Grigorios Tsoumakas
See Also:
Serialized Form

Constructor Summary
OneMinusAveragePrecision()
           
 
Method Summary
 double computeLoss(int[] ranking, boolean[] trueLabels)
          Computes the ranking loss function
 String getName()
          Returns the name of the loss function
 
Methods inherited from class mulan.evaluation.loss.RankingLossFunctionBase
computeLoss
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

OneMinusAveragePrecision

public OneMinusAveragePrecision()
Method Detail

getName

public String getName()
Description copied from interface: MultiLabelLossFunction
Returns the name of the loss function

Returns:
the name of the loss function

computeLoss

public double computeLoss(int[] ranking,
                          boolean[] trueLabels)
Description copied from interface: RankingLossFunction
Computes the ranking loss function

Specified by:
computeLoss in interface RankingLossFunction
Specified by:
computeLoss in class RankingLossFunctionBase
Parameters:
ranking - the ranking of the learner for an example
trueLabels - the ground truth of the example
Returns:
the value of the loss function