mulan.evaluation.loss
Class RankingLoss

java.lang.Object
  extended by mulan.evaluation.loss.RankingLossFunctionBase
      extended by mulan.evaluation.loss.ErrorSetSize
          extended by mulan.evaluation.loss.RankingLoss
All Implemented Interfaces:
Serializable, MultiLabelLossFunction, RankingLossFunction

public class RankingLoss
extends ErrorSetSize

Implementation of the "ranking loss" ranking loss function. It is basically the size of the error set divided by all possible pairs of relevant and irrelevant labels

Version:
2010.11.05
Author:
Grigorios Tsoumakas
See Also:
Serialized Form

Constructor Summary
RankingLoss()
           
 
Method Summary
 double computeLoss(int[] ranking, boolean[] groundTruth)
          Computes the ranking loss function
 String getName()
          Returns the name of the loss function
 
Methods inherited from class mulan.evaluation.loss.RankingLossFunctionBase
computeLoss
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

RankingLoss

public RankingLoss()
Method Detail

getName

public String getName()
Description copied from interface: MultiLabelLossFunction
Returns the name of the loss function

Specified by:
getName in interface MultiLabelLossFunction
Overrides:
getName in class ErrorSetSize
Returns:
the name of the loss function

computeLoss

public double computeLoss(int[] ranking,
                          boolean[] groundTruth)
Description copied from interface: RankingLossFunction
Computes the ranking loss function

Specified by:
computeLoss in interface RankingLossFunction
Overrides:
computeLoss in class ErrorSetSize
Parameters:
ranking - the ranking of the learner for an example
groundTruth - the ground truth of the example
Returns:
the value of the loss function