mulan.evaluation.measure
Class MeanAveragePrecision
java.lang.Object
   mulan.evaluation.measure.MeasureBase
mulan.evaluation.measure.MeasureBase
       mulan.evaluation.measure.ConfidenceMeasureBase
mulan.evaluation.measure.ConfidenceMeasureBase
           mulan.evaluation.measure.LabelBasedAveragePrecision
mulan.evaluation.measure.LabelBasedAveragePrecision
               mulan.evaluation.measure.MeanAveragePrecision
mulan.evaluation.measure.MeanAveragePrecision
- All Implemented Interfaces: 
- Serializable, MacroAverageMeasure, Measure
- Direct Known Subclasses: 
- GeometricMeanAveragePrecision
- public class MeanAveragePrecision 
- extends LabelBasedAveragePrecision- implements MacroAverageMeasure
Implementation of MAP (Mean Average Precision)
- Version:
- 2010.12.10
- Author:
- Eleftherios Spyromitros-Xioufis
- See Also:
- Serialized Form
 
 
 
 
 
 
 
 
 
 
MeanAveragePrecision
public MeanAveragePrecision(int numOfLabels)
- Creates a new instance of this class
 
- Parameters:
- numOfLabels- the number of labels
 
getValue
public double getValue()
- Calculates map using multiple calls to getValue(int). If a label has 0 relevant examples, then it is omitted from the average.
 
- 
- Specified by:
- getValuein interface- Measure
 
- 
- Returns:
- the average measure value computed so far
 
getValue
public double getValue(int labelIndex)
- Returns the average precision for a label. If there are no relevant examples for a given label, Double.NaNis returned.
 
- 
- Specified by:
- getValuein interface- MacroAverageMeasure
 
- 
- Parameters:
- labelIndex- the index of a label (starting from 0)
- Returns:
- the average precision for the given label
 
getName
public String getName()
- Description copied from interface: Measure
- Gets the name of a measure.
 
- 
- Specified by:
- getNamein interface- Measure
 
- 
- Returns:
- the name of a measure.
 
getIdealValue
public double getIdealValue()
- Description copied from interface: Measure
- Gets an 'ideal' value of a measure. The 'ideal' means, that the value
 represents the best achievable performance of a learner for an prediction of
 a multi-label task and associated true labels.
 
- 
- Specified by:
- getIdealValuein interface- Measure
 
- 
- Returns:
- the ideal value