mulan.classifier.meta.thresholding
Class OneThreshold

java.lang.Object
  extended by mulan.classifier.MultiLabelLearnerBase
      extended by mulan.classifier.meta.MultiLabelMetaLearner
          extended by mulan.classifier.meta.thresholding.OneThreshold
All Implemented Interfaces:
Serializable, MultiLabelLearner, TechnicalInformationHandler

public class OneThreshold
extends MultiLabelMetaLearner

Class that estimates a single threshold for all labels and examples. For more information, see

Read, Jesse, Pfahringer, Bernhard, Holmes, Geoff: Multi-label Classification Using Ensembles of Pruned Sets. In: Data Mining, 2008. ICDM '08. Eighth IEEE International Conference on, 995-1000, 2008.

BibTeX:

 @inproceedings{Read2008,
    author = {Read, Jesse and Pfahringer, Bernhard and Holmes, Geoff},
    booktitle = {Data Mining, 2008. ICDM '08. Eighth IEEE International Conference on},
    pages = {995-1000},
    title = {Multi-label Classification Using Ensembles of Pruned Sets},
    year = {2008},
    location = {Pisa, Italy}
 }
 

Version:
2010.12.14
Author:
Marios Ioannou, George Sakkas, Grigorios Tsoumakas
See Also:
Serialized Form

Field Summary
 
Fields inherited from class mulan.classifier.meta.MultiLabelMetaLearner
baseLearner
 
Fields inherited from class mulan.classifier.MultiLabelLearnerBase
featureIndices, labelIndices, numLabels
 
Constructor Summary
OneThreshold()
          Default constructor
OneThreshold(MultiLabelLearner baseLearner, BipartitionMeasureBase aMeasure)
           
OneThreshold(MultiLabelLearner baseLearner, BipartitionMeasureBase aMeasure, int someFolds)
           
 
Method Summary
protected  void buildInternal(MultiLabelInstances trainingData)
          Learner specific implementation of building the model from MultiLabelInstances training data set.
 TechnicalInformation getTechnicalInformation()
          Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
 double getThreshold()
          Returns the calculated threshold
 String globalInfo()
          Returns a string describing the multi-label learner.
protected  MultiLabelOutput makePredictionInternal(Instance instance)
          Learner specific implementation for predicting on specified data based on trained model.
 
Methods inherited from class mulan.classifier.meta.MultiLabelMetaLearner
getBaseLearner
 
Methods inherited from class mulan.classifier.MultiLabelLearnerBase
build, debug, getDebug, isModelInitialized, isUpdatable, makeCopy, makePrediction, setDebug
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

OneThreshold

public OneThreshold()
Default constructor


OneThreshold

public OneThreshold(MultiLabelLearner baseLearner,
                    BipartitionMeasureBase aMeasure,
                    int someFolds)
Parameters:
baseLearner - the underlying multi=label learner
aMeasure - the measure to optimize
someFolds - number of cross-validation folds

OneThreshold

public OneThreshold(MultiLabelLearner baseLearner,
                    BipartitionMeasureBase aMeasure)
Parameters:
baseLearner - the underlying multi=label learner
aMeasure - measure to optimize
Method Detail

buildInternal

protected void buildInternal(MultiLabelInstances trainingData)
                      throws Exception
Description copied from class: MultiLabelLearnerBase
Learner specific implementation of building the model from MultiLabelInstances training data set. This method is called from MultiLabelLearnerBase.build(MultiLabelInstances) method, where behavior common across all learners is applied.

Specified by:
buildInternal in class MultiLabelLearnerBase
Parameters:
trainingData - the training data set
Throws:
Exception - if learner model was not created successfully

makePredictionInternal

protected MultiLabelOutput makePredictionInternal(Instance instance)
                                           throws Exception,
                                                  InvalidDataException
Description copied from class: MultiLabelLearnerBase
Learner specific implementation for predicting on specified data based on trained model. This method is called from MultiLabelLearnerBase.makePrediction(weka.core.Instance) which guards for model initialization and apply common handling/behavior.

Specified by:
makePredictionInternal in class MultiLabelLearnerBase
Parameters:
instance - the data instance to predict on
Returns:
the output of the learner for the given instance
Throws:
Exception - if an error occurs while making the prediction.
InvalidDataException - if specified instance data is invalid and can not be processed by the learner

getTechnicalInformation

public TechnicalInformation getTechnicalInformation()
Description copied from class: MultiLabelLearnerBase
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.

Specified by:
getTechnicalInformation in interface TechnicalInformationHandler
Specified by:
getTechnicalInformation in class MultiLabelLearnerBase
Returns:
the technical information about this class

getThreshold

public double getThreshold()
Returns the calculated threshold

Returns:
the calculated threshold

globalInfo

public String globalInfo()
Description copied from class: MultiLabelLearnerBase
Returns a string describing the multi-label learner.

Specified by:
globalInfo in class MultiLabelLearnerBase
Returns:
a description suitable for displaying in a future gui