|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object mulan.classifier.MultiLabelLearnerBase mulan.classifier.meta.MultiLabelMetaLearner mulan.classifier.meta.thresholding.RCut
public class RCut
Classs that implements RCut(Rank-based cut). It selects the k top ranked labels for each instance, where k is a parameter provided by the user or automatically tuned.Yiming Yang: A study of thresholding strategies for text categorization. In: Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, 137 - 145, 2001.
BibTeX:@inproceedings{Yang2001, author = {Yiming Yang}, booktitle = {Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval}, pages = {137 - 145}, title = {A study of thresholding strategies for text categorization}, year = {2001}, location = {New Orleans, Louisiana, United States} }
Field Summary |
---|
Fields inherited from class mulan.classifier.meta.MultiLabelMetaLearner |
---|
baseLearner |
Fields inherited from class mulan.classifier.MultiLabelLearnerBase |
---|
featureIndices, labelIndices, numLabels |
Constructor Summary | |
---|---|
RCut()
Default constructor |
|
RCut(MultiLabelLearner baseLearner)
Creates a new instance of RCut |
|
RCut(MultiLabelLearner baseLearner,
BipartitionMeasureBase aMeasure)
Creates a new instance of RCut |
|
RCut(MultiLabelLearner baseLearner,
BipartitionMeasureBase aMeasure,
int someFolds)
Creates a new instance of RCut |
Method Summary | |
---|---|
protected void |
buildInternal(MultiLabelInstances trainingData)
Learner specific implementation of building the model from MultiLabelInstances
training data set. |
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on. |
String |
globalInfo()
Returns a string describing the multi-label learner. |
protected MultiLabelOutput |
makePredictionInternal(Instance instance)
Learner specific implementation for predicting on specified data based on trained model. |
void |
setDebug(boolean debug)
Set debugging mode. |
Methods inherited from class mulan.classifier.meta.MultiLabelMetaLearner |
---|
getBaseLearner |
Methods inherited from class mulan.classifier.MultiLabelLearnerBase |
---|
build, debug, getDebug, isModelInitialized, isUpdatable, makeCopy, makePrediction |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public RCut()
public RCut(MultiLabelLearner baseLearner)
baseLearner
- the underlying multi-label learnerpublic RCut(MultiLabelLearner baseLearner, BipartitionMeasureBase aMeasure, int someFolds)
baseLearner
- the underlying multi-label learneraMeasure
- measure to optimizesomeFolds
- cross-validation foldspublic RCut(MultiLabelLearner baseLearner, BipartitionMeasureBase aMeasure)
baseLearner
- the underlying multi-label learneraMeasure
- measure to optimizeMethod Detail |
---|
protected void buildInternal(MultiLabelInstances trainingData) throws Exception
MultiLabelLearnerBase
MultiLabelInstances
training data set. This method is called from MultiLabelLearnerBase.build(MultiLabelInstances)
method,
where behavior common across all learners is applied.
buildInternal
in class MultiLabelLearnerBase
trainingData
- the training data set
Exception
- if learner model was not created successfullypublic TechnicalInformation getTechnicalInformation()
MultiLabelLearnerBase
getTechnicalInformation
in interface TechnicalInformationHandler
getTechnicalInformation
in class MultiLabelLearnerBase
protected MultiLabelOutput makePredictionInternal(Instance instance) throws Exception, InvalidDataException
MultiLabelLearnerBase
MultiLabelLearnerBase.makePrediction(weka.core.Instance)
which guards for model
initialization and apply common handling/behavior.
makePredictionInternal
in class MultiLabelLearnerBase
instance
- the data instance to predict on
Exception
- if an error occurs while making the prediction.
InvalidDataException
- if specified instance data is invalid and can not be processed by the learnerpublic void setDebug(boolean debug)
MultiLabelLearnerBase
setDebug
in interface MultiLabelLearner
setDebug
in class MultiLabelLearnerBase
debug
- true
if debug output should be printedpublic String globalInfo()
MultiLabelLearnerBase
globalInfo
in class MultiLabelLearnerBase
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |