|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||
java.lang.Objectmulan.classifier.MultiLabelLearnerBase
mulan.classifier.meta.MultiLabelMetaLearner
mulan.classifier.meta.thresholding.RCut
public class RCut
Classs that implements RCut(Rank-based cut). It selects the k top ranked labels for each instance, where k is a parameter provided by the user or automatically tuned.Yiming Yang: A study of thresholding strategies for text categorization. In: Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, 137 - 145, 2001.
BibTeX:
@inproceedings{Yang2001,
author = {Yiming Yang},
booktitle = {Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval},
pages = {137 - 145},
title = {A study of thresholding strategies for text categorization},
year = {2001},
location = {New Orleans, Louisiana, United States}
}
| Field Summary |
|---|
| Fields inherited from class mulan.classifier.meta.MultiLabelMetaLearner |
|---|
baseLearner |
| Fields inherited from class mulan.classifier.MultiLabelLearnerBase |
|---|
featureIndices, labelIndices, numLabels |
| Constructor Summary | |
|---|---|
RCut()
Default constructor |
|
RCut(MultiLabelLearner baseLearner)
Creates a new instance of RCut |
|
RCut(MultiLabelLearner baseLearner,
BipartitionMeasureBase aMeasure)
Creates a new instance of RCut |
|
RCut(MultiLabelLearner baseLearner,
BipartitionMeasureBase aMeasure,
int someFolds)
Creates a new instance of RCut |
|
| Method Summary | |
|---|---|
protected void |
buildInternal(MultiLabelInstances trainingData)
Learner specific implementation of building the model from MultiLabelInstances
training data set. |
TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on. |
String |
globalInfo()
Returns a string describing the multi-label learner. |
protected MultiLabelOutput |
makePredictionInternal(Instance instance)
Learner specific implementation for predicting on specified data based on trained model. |
void |
setDebug(boolean debug)
Set debugging mode. |
| Methods inherited from class mulan.classifier.meta.MultiLabelMetaLearner |
|---|
getBaseLearner |
| Methods inherited from class mulan.classifier.MultiLabelLearnerBase |
|---|
build, debug, getDebug, isModelInitialized, isUpdatable, makeCopy, makePrediction |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public RCut()
public RCut(MultiLabelLearner baseLearner)
baseLearner - the underlying multi-label learner
public RCut(MultiLabelLearner baseLearner,
BipartitionMeasureBase aMeasure,
int someFolds)
baseLearner - the underlying multi-label learneraMeasure - measure to optimizesomeFolds - cross-validation folds
public RCut(MultiLabelLearner baseLearner,
BipartitionMeasureBase aMeasure)
baseLearner - the underlying multi-label learneraMeasure - measure to optimize| Method Detail |
|---|
protected void buildInternal(MultiLabelInstances trainingData)
throws Exception
MultiLabelLearnerBaseMultiLabelInstances
training data set. This method is called from MultiLabelLearnerBase.build(MultiLabelInstances) method,
where behavior common across all learners is applied.
buildInternal in class MultiLabelLearnerBasetrainingData - the training data set
Exception - if learner model was not created successfullypublic TechnicalInformation getTechnicalInformation()
MultiLabelLearnerBase
getTechnicalInformation in interface TechnicalInformationHandlergetTechnicalInformation in class MultiLabelLearnerBase
protected MultiLabelOutput makePredictionInternal(Instance instance)
throws Exception,
InvalidDataException
MultiLabelLearnerBaseMultiLabelLearnerBase.makePrediction(weka.core.Instance) which guards for model
initialization and apply common handling/behavior.
makePredictionInternal in class MultiLabelLearnerBaseinstance - the data instance to predict on
Exception - if an error occurs while making the prediction.
InvalidDataException - if specified instance data is invalid and can not be processed by the learnerpublic void setDebug(boolean debug)
MultiLabelLearnerBase
setDebug in interface MultiLabelLearnersetDebug in class MultiLabelLearnerBasedebug - true if debug output should be printedpublic String globalInfo()
MultiLabelLearnerBase
globalInfo in class MultiLabelLearnerBase
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||